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by (2) = 50 + 0 (I/b1 - +), 2 _ b, - 0 

TxN (J) = Ktf [2x (b, - z)]-’ ? f O(#-b,), Z-obl”-O 

R,~_.2sK fx f 1) Fb, (cos fJ - o sin 0) 
x+i 11’ &I = 2 flnxbl (al’ - bl*) 

(x+l)Psine 
so= ?&)I,,*- bxs 

(3.16) 

Figure 2 shows how the dimensionless quantity K, = K,, F-‘fBna, varies as a function of 

bh in the case of a normal load (B=J/,n) for x= i,8 and x= 3 (the dashed lines 1 and 2). 
As expected, the tangential stress intensity coefficient K, increases monotonically and 
without limit as the length of the separation segment increases. Thus, if the length of a 
closed crack reaches its critical value, it becomes globally unstable under a constant load 
and spreads over the whole segment [-nl,n,]. 
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LYAPUNOV STABILITY AND SIGN DEFINITENESS OF A QUADRATIC FORM IN A CONE* 

L.B. RAPOPORT 

The use of the second Lyapunov method in many problems in the theory of 
stability of motion leads to the problem of sign definiteness of a 
quadratic form whose variables are defined in a convex polyhedral cone 
CC R”. A method of obtaining the necessary and sufficient conditions is 
given for this problem. The conditions imposed on the elements of the 
third- and fourth-order matrices are given. The problem of as_ymptotic 
stability of a system with resonance fl/ is solved as an example. 

A number of problems of the theory of the stability of motion require 
that the sign definiteness of the quadratic form be established, with 
conditions written in the form of linear inequalities. Usually, the 
conditions are thoseof non-negativity /l-3/, and the more general conditions 
can be reduced to them. The problem of sign definiteness of a quadratic 
form under the conditions of non-negativeness was considered for an 
arbitrary number of variables in /4/. However, the results obtained there 
can be reduced to the problem of the compatibility of systems of inequalities 
and pose well-known difficulties when used to solve specific problems. 
The problemofthe sign definiteness of a quadratic form in a convex cone 

*Prikl.lfatem.Mekhan.,50,4,674-679,1986 



(in general, infinitely-sided) belonqing to a Hilbert space is considered 
in /5/, and the necessary and sufficient conditions are obtained, but in 
the finite-dimensional case discussed below the above result is the same 
as that obtained in /4/. 

1. Let us consdier the problem of the sign definiteness of a real quadratic form in an 
arbitrary, polyhedral cone 

The real, symmetric n x a-matrix A with components aij= aji (&j= $,._.,n) will be called 
conditionally positive in the cone C, provided that the quadratic form xTAz satisfies the 
codition 

zrnx>o, ze%c (1.2) 

(we will assume the vectors to be column vectors and T denotes transposition). 
In accordance with the representation (1.11, problem (1.2) reduces to the corresponding 

problem for the quadratic form 

(5 Yiri)+ a4 (jl?/jr') 
1=1 

in the variables gi, under the conditions that ~~>O(i= %,...,k) . It is sufficient therefore 
to consider the problem of the conditions of positiveness (CP) of the matrix in a non-negative 
cone. Below we shall consider only this problem, denoting everywhere by 

R+n={zERnIzi>O, i=l,...,n} 

the non-negative cone in the space R”. 
The method of analysing the CP of the matrix in the non-negative cone is based on the 

n-dimensional induction. According to the inductive assumption the quadratic form is positive 
on the (n- I)-dimensional sides of the cone R+?‘, and this is obviously necessary for the CP 
of the matrix A in R+n. 

Let us denote by A@‘*“*.+ inO the (n - m) x (n-mmf-matrix obtained from A by deleting the rows 
and columns with the indices il<ia<...<Im. The positiveness of the quadratic form on the 
sides of the cone I?= is equivalent to the CP of the matrices A(') and Rye1 when I= f,...,n. 

Let us establish the conditions under which the inductive assumption is not only necessary, 
but also sufficient. Let us denote by b >b 7 >h, the non-increasing sequence of eigen- I, 4,..., 
values of the matrix A, and by qz,qp,...,qn the orthonormed system of the eigenvectors; p(A) 
is the number of positive eigenvalues. 

Lemma I. If p(A)gn-ii, then the necessary and sufficient condition for the CP of the 
matrix A in R+” is that the matrix A(')(i= 1.,..., n) be conditionally positive in II:-’ and 
some vector X* for which 

(@AZ*<0 (1.3) 

has components of differing sign. 

Proof. The matrices A@) are necessarily conditionally positive. If the vector z* has no 
components of different sign, then either z*=R+“, or -z*ER+*, which by virtue of (1.3) 
contradicts the CP of the matrix A in R+“. 

Let us prove the sufficiency. We will assume that the assertion of the lemma is false. 
Then a vector ye R+n can be found such that I/~AuSO, and by virtue of the CP of the matrix 
A(“) in + RV' we have 

yi 7 0, i = 1 ,..*,ra (f.4) 

(the equality gk=O contradicts the CP of the matrix A(Q). Having constructed for the scalar 
5 from the segment IO,11 the vector z(%)=.~*+(i--)y, we obtain 

(z(r))T &(7)=d(**)T ‘49 + 2r(l-r) yT AZ* +(i -*)‘yT Ay (1.5) 
Replacing, if necessary, x*by -z*, we obtain gTAr*<O and by virtue of (1.5) we have 

(3 WT A* (N d;; 0 (W 

for all O<z<i. For sufficiently small T (1.4) yields Zi(~)>O,i=i,...,a, and since the 
vector Z* has components of different sign, it follows that we have z(T~)= R+” at some 04 
r,<i and +~(T&=O for some k. This, together with (1.61, contradicts the CP of the matrix 
A@) in R+“*‘. 

Below we shall show that when p (A)<n-1, the inductive assumption becomes sufficient 
without additional conditions. 

Lemma 2. If p(A)<n---i, then the necessary and sufficient condition for CP of the 
matrix A in R= , is the CP of the matrix A(‘)@= 1, . . ..a) in R+*-? 

Proof. Here we only need to show the sufficiency. Let us take any vector 9 with positive 
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(4.7) 

Since P(A) + i< n, it follows that we can find for ~(A)fi vectors y, ql,...,qPCA) a vector 

+* # 0 orthogonal to them 
(z+)T # = 0, (z*)T qi = 0, i = 1,. . .( p (A) (1.8) 

Then, using the spectral expansion /6/ of the matrix A, we obtain 

(=*)Tilr*=,~~li((=*)Tsi)l= i bi((z*)rpi)a<O (1.3) 
i=p(A)+l 

Conditions (1.7) and the first equation of (1.8) together imply that the vector Z* has 
components of different sign. This, together with (1.9), and by virtue of Lemma 1, means that 
CP of the matrix A in R+” holds. 

Thus, when p(A)<n , the matrix A is conditionally positive in R+” if and only if all 
matrices A('), f = 1,. .‘., n are conditionally positive in R “-I, and in the case of P(A)= n-i 
any vector chosen in accordance with condition (l-3), his components of different sign. Let 
us discuss the geometrical meaning of this result. We denote by 

Q=(zER”~z~AI<O)\{O) (1.10) 

the region of the space R” containing the vectors which impart positive values to the quadratic 
form, except for the null vector. We shall also specify, together with R=, the cone R_” by 
means of the condition that ZE R_n if --s=R+“. Lemma 2 means that if the region P does not 
intersect the boundary of the cone R+” (and R_n since (-=)*A(--2)= z*Az), then 51 has no common 
points with the inner part int (R+“UR_“) of these cones either. Indeed, when p(A)<n--l, at 
least two eigenvectors corresponding to the non-positive eigenvalues of the matrix A belong to 
6; together with the whole subspace (except for the point 0) stretched over them. But the 
subspace cannot have common points with the inner part of the cones R&” and R_n without 
intersecting their boundaries. If on the other hand p(A)= n- 1, then the region P will 
consists of two subregions P, and Q,, each represented by a sharp cone with the apex at the 
point 0, and if ~~52~. then -zEP, when h,=OO, and 62, are semistraight lines. Now it is 
possible that Pcint (R+” U R_“). Applying Lemma 1 to this case we find, that if R does not 
intersect the boundary R+“UR_“, then int (R+nUR_n) together with any single vector z* EQ either 
contains the whole region Q as well, or it does not. 

2. Thus when p(A)<n--l , we must check the CP of all matrices A(‘) in R+“-’ and find, 
when p(A)= n-i, a vector Z* which satisfies the condition (1.3) and check the signs of its 
components. When p(A)= n, the matrix A is positive definite and hence conditionally positive 
in R+“. According to Cauchy's theorem on separation /7/, the following estimate holds for 
the matrices A(') (i = i, . ., n): 

P (A) - 3 <P (A(‘)) d P (A) (2.4) 

Therefore, if p(A)= n--l, then either p(A@))= n- 1 or p(A(‘))= n- 2. In the first case 
the (n-1)x (n- l)-matrix A(‘) is positive definite. In the second case we must apply Lemma 1 
to the matrix Ad’). If the vector s*~R”-l satisfies the conditions of Lemma 1 for the matrix 
A('), thenthevector +**=Rn which complements I* with the component z?* = 0 will satisfy the 
conditions of Lemma 1 for the matrix A. Therefore, when analysing the CP of matrix A, we must 
consider the vector +* only in the case when p(A)- n-4 and p (A(‘$= n-1 for all (i= *,...,n), 
i.e. when all matrices A(') are positive definite. Such matrices (we shall call them 
minimal) satisfy the following conditions: d&A <Oand A(") are positive definite i = i, . . ., n. 
It is clear that R matrices A(') will be positive definite if and only if one of them, e.g. 
A@', in positive definite (i.e. has positive angular minors) and the rest satisfy the condition 
detA(')>O. Thus the conditions for the matrix A to be minimal take the form 

(11~ = det 4@9....")>0, det4(3V...*n)>0, . . ., det A(“) > 0 (2.2) 

detAti)>O, i=i,...,n--l (2.3) 

d&A < 0 (2.4) 

where detA(k*...J") are the angular minors of the matrix Acn) consisting of k--i rows and columns. 
Let us denote by Ai, the cofactors of the elements ai, in the minimal matrix A, and by 

ci E R” a vector of the form (Ail,..., Ai,)T. Then, since Cii= Aii = detA(')>O, we have, by virtue 
of the properties of the cofactors, 

(C')T AC'=detA(')detA<O 

Therefore we can take ony of the vectors Ci(i= i,...,n) as the vector z* satisfying condition 
(1.3). From Lemma 1 it follows thatif the matrix A is minimal, then either every vector 
ci (i = i 1.. ., n) has a negative component, or all vectors Ci are non-negative. To be specific, 
we shall take Cn as z*. 

The above discussion leads to the following formulation of the final result. 
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Theorem 1. In order for the matrix A to be positive in Ei+*', it is necessary and suf- 
ficient that one of the following three conditions holds: 1) the matrix A is positive definite, 
2) all matrices A@) are conditionally positive in R n-i and at least one of these matrices is 
positive definite, 3) the matrix A is minimal and at+least one of the numbers A,I,4,,,...,A,,,+, 

is negative. 
We use the above theorem in Sect.3 to obtain the algebraic criterion for the CP. 
Let us obtain a corollary to Theorem 1, which is interesting in itself. We shall call 

the matrices of the form A(i'*""im' the submatrices of A. From the definition of the minimal 
matrix and the Cauchy theorem on the distribution, it follows that if 1<_p(A)< n- 1, then the 
matrix A will contain minimal submatrices. The condition p(A)>, 1 holds if the matrix A has 
positive diagonal elements, and this is necessary for the CP. Applying Theorem 1 by induction, 
we obtain 

Corollary. The necessary and sufficient condition for the matrix A to be positive is that 
its diagonal elements are positive and one of the following two conditions holds: 1) the matrix 
A is positive definite, 2) all minimal submatrices of A have, amongst the cofactors of their 
last (to be specific) rows, at least one negative component. 

3. The criterion given below reduces the problem of CP to that of analysing the signs 
of the minors of A, i.e. it represents the set of conditions for the elements of the matrix. 

Theorem 2. The necessary and sufficient condition fox the matrix A in Rsn to be positive 
is the CP of all matrices A(')(i= i,...,n) in R+"-' and, that at least one of the following 
conditions holds: 

detA(a....,n)gO,...,det A(*-'~")< 0, det&)< 0 (3.1) 

detA(')<O,...,det A(n-l)<O (3.2) 

det A > 0 (3.3) 

(The conditions listed in (3.1) and (3.2) hold when n>3.) 

Proof. We shall establish the equivalence between the conditions of this theorem, and 
those of Theorem 1. Let condition 1) of Theorem 1 hold. Then all matrices A(*),...,Atn) will 
be positive definite and condition (3.3) will hold. In this case the conditions of Theorem 2 
will also hold. If condition 2) of Theorem 1 holds but conditions (2.2)-(2.4) do not hold, 
then at least one of the conditions listed in (3.1)-(3.3) will hold. The first condition of 
(2.2) &,>O) must hold, since it is necessary for the CP of A in R+". Moreover, A('), . . ., A(") 
are conditionally positive and the conditions of Theorem 2 again hold. In case 3) of Theorem 
1 the conditions (2.2)-(2.4) and at least one of the conditions (3.4) all hold. Since all 
matrices A('), l., A(*) of the minimal matrix A are positive definite, it follows that the 
conditions of Theorem 2 hold in this case also. 

Next we shall show that one of the conditions of Theorem 1 follows from the conditions 
of Theorem 2. If none of the conditions listed in (3.1)-(3.2) hold, then all matrices A('),..., 
A(“) are positive definite (the CP of thematrix A(') also implies that all>O). If in addition 
(3.3) holds, then A is positive definite and condition 1) of Thoerem I. is satisfied. If (3.3) 
does not hold, then according to (2.2)-(2.4) the matrix A is minimal. One of the remaining 

conditions of (3.4) holds by virtue of the conditions of the theorem, and condition 3) of 
Theorem 1 also holds. If on the other hand one of the conditions (3.l.)-(3.2) holds, then at 
least one of the matrices An),..., A(") is not positive definite and condition 2) of Theorem 1 
is satisfied. The theorem is proved. 

The above theorem, applied by induction, enables us to obtain a set of conditions in the 
form of inequalities for the matrix coefficients connected by the symbols AND and OR, for any 
dimensionality R. 

4. Let us consider the cases when n= 2,3,4, which are most often encountered in problems 
of stability. 

n = 2. This elementary case is of interest, since it represents the first induction step 
when Theorem 2 is used. The matrices A(') and At2' each have a single element nz9 and =11* the 
cofactor Apl= --ax2, and the CP of A(lf and A@) mean that 

811 >o, %>O (4.1) 

Not a single condition of (3.1), (3.2) holds, and conditions (3.3), (3.4) yield det A > 

0, at> 0. When at least one of these inequalities is satisfied, this is equivalent to the 
condition 

IEIU {det A, ad > 0 f4.2) 

which agrees with the well-known criterion (see e.g. /4/). 
II = 3. In this case we have 
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Applying Theorem 2, we obtain the following conditions. The matrices A('), A("), A(') must 
be conditionally positive, and this means, taking into account (4.1) and (4.2), that the 
following conditions hold: 

all > 0, p, > 0, am > 0, max (det A(‘), a& > 0 (4.3) 

max {det AC2), ax.,) > 0, max {det Afs)f am] > 0 

According to (3.1)-(3.4), the CP of matrix A requires, in addition to (4.3), that one of 
the following conditions be satisfied: 

det &)gO, det A@)< 0, d&A@)<0 

detA>O, 

(4.4) 

n= 4. The conditions for the third-order matrices A(')(i= i,...,b) are given above. 
According to Theorem 2, in addition to these conditions at least one of the inequalities 
obtained from (3.1)-(3.4) and taking the form 

must also hold. 

5. The sufficient conditions for the asymptotic stability were constructed in /l/ for 
the trivial solution of the autonomous system of ordinary differential equations with the 
fourth-order resonance. The conditions were formulated as the conditions of negative definite- 
ness of a matrix whose elements were obtained using the coefficients of normal form. It was 
noted in /l/ that the conditions can be broadened, since it is sufficient to demand the 
negative definiteness within the non-negative cone only. We consider the sign definiteness 
of the following matrix for the case of three degrees of freedom (the notation used in /l/ is 
retained here) 

where y,= y&JD,,, ys= ~Dsl/Rnr ye is an arbitrary positive constant, D,, Da. Da are the covariant 
components of the vector product (2 x b, a= (a,.(tlras), b= (b,,b,,b,), aij are the coefficients of the 
normal form (see (1.1) of /l/ and D,JDa>O and D,,/LJ,,>O. Having written 

and applying to the matrix M the condition (4.3), (4.4), we obtain 

%I < 0. =, < 0, %s <o 

mm Id,,, -ht >O, =8x {dis, -4) > 0, max {&. -&j > 0 
&&IX 

and at least one of the following conditions holds: 

(5.1) 

(5.2) 

(5.3) 

We see at once that conditions (5.1)-(5.3) widen conditions (3.2) of /I/'. 
1n conclusion we note the paper by Molchanov /8/ where a similar algebraic problem occurs. 

The author thanks V.N. Tkhai for his interest and comments, and the referee for a number 
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of suggestions and additions. 
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THE USE OF THE METHOD OF AVERAGING TO STUDY NON-LINEAR OSCILLATIONS 
OF THE CELTIC STONE* 

M. PASKAL 

The approximate solution of the equations of the perturbed motion of a 

Celtic stone near its position of equilibrium, obtained in /l/ by retaining 

in these equations terms of the second order with respect to the perturba- 

tions and averaging** (**In connection with a footnote in /3/ which 

appeared later than /l/, we note that the solution obtained in /3/ is 

identical with that appearing in /l/) is used for a qualitative and 

quantitative explanation of the following effect established by numerical 

integration of the complete equations /2/. If the Celtic stone is rotated 

about the vertical axis in a specified direction, then after a fairly short 

time it ceases to rotate, begins to oscillate about the horizontal axis, 

and then resumes its rotation in the opposite direction. For some of the 

models of the Celtic stone the change in the direction of rotation may 

occur more than once. 

Let m be the mass of the body, GxIxzza the coordinate system attached to the body whose 

axes are directed along the principal central axes of inertia of the body, A,B,C are the 

corresponding moments of inertia, zO,yO are the horizontal coordinates of the centre of mass 

in the fixed coordinate system O&,y,z, (the O@OyO plane is the same as the reference plane), 
q,$,e are the Euler angles determining the orientation of the system Gxlqzs relative to O+Q~,,Q, 

6,q.b are the coordinates of the point I of contact of the body with the reference plane in 
the system Gx~.z~z~,P,,P~ are the radii of curvature of the body at the point J with coordinates 

(O,--a,O) in the system Gz,z+zt,or is the angle defining the position of the principal axes of 
curvature at the point J relative to the axes Gz,, Gz,. We study the same model of the Celtic 
stone as that in /2/. In particular, the following inequalities hold for this model: 

PZ>Pl>% O<a<sl% map,<A+C--<mep, 

mpg,>B>A>C (B=A+ma',C=C+ma') 

"h.e system under consideration represents a non-holonomic Chaplygin system. Its equations 

of motion are independent of the angle $ and admit of the family of solutions 

e=s/2,~=0,*~=0 (1) 

where o is an arbitrary constant. The solutions correspond to uniform rotation of the body 

about the vertical axis GQ, and to the equilibrium state of the body when o=o. The point 
of contact I of the body with the plane coincides with the point J of the body. 
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